Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.170
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 15: 1380065, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38726005

RESUMO

Introduction: Solid cancers Myeloid cells are prevalent in solid cancers, but they frequently exhibit an anti-inflammatory pro-tumor phenotype that contribute to the immunosuppressive tumor microenvironment (TME), which hinders the effectiveness of cancer immunotherapies. Myeloid cells' natural ability of tumor trafficking makes engineered myeloid cell therapy an intriguing approach to tackle the challenges posed by solid cancers, including tumor infiltration, tumor cell heterogenicity and the immunosuppressive TME. One such engineering approach is to target the checkpoint molecule PD-L1, which is often upregulated by solid cancers to evade immune responses. Method: Here we devised an adoptive cell therapy strategy based on myeloid cells expressing a Chimeric Antigen Receptor (CAR)-like immune receptor (CARIR). The extracellular domain of CARIR is derived from the natural inhibitory receptor PD-1, while the intracellular domain(s) are derived from CD40 and/or CD3ζ. To assess the efficacy of CARIR-engineered myeloid cells, we conducted proof-of-principle experiments using co-culture and flow cytometry-based phagocytosis assays in vitro. Additionally, we employed a fully immune-competent syngeneic tumor mouse model to evaluate the strategy's effectiveness in vivo. Result: Co-culturing CARIR-expressing human monocytic THP-1 cells with PD-L1 expressing target cells lead to upregulation of the costimulatory molecule CD86 along with expression of proinflammatory cytokines TNF-1α and IL-1ß. Moreover, CARIR expression significantly enhanced phagocytosis of multiple PD-L1 expressing cancer cell lines in vitro. Similar outcomes were observed with CARIR-expressing human primary macrophages. In experiments conducted in syngeneic BALB/c mice bearing 4T1 mammary tumors, infusing murine myeloid cells that express a murine version of CARIR significantly slowed tumor growth and prolonged survival. Conclusion: Taken together, these results demonstrate that adoptive transfer of PD-1 CARIR-engineered myeloid cells represents a promising strategy for treating PD-L1 positive solid cancers.


Assuntos
Antígeno B7-H1 , Imunoterapia Adotiva , Células Mieloides , Receptores de Antígenos Quiméricos , Microambiente Tumoral , Animais , Antígeno B7-H1/metabolismo , Antígeno B7-H1/genética , Antígeno B7-H1/imunologia , Camundongos , Humanos , Células Mieloides/imunologia , Células Mieloides/metabolismo , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/metabolismo , Imunoterapia Adotiva/métodos , Microambiente Tumoral/imunologia , Linhagem Celular Tumoral , Feminino , Neoplasias/imunologia , Neoplasias/terapia
2.
Front Immunol ; 15: 1384039, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38726000

RESUMO

Chimeric antigen receptor-natural killer (CAR-NK) cell therapy is a novel immunotherapy targeting cancer cells via the generation of chimeric antigen receptors on NK cells which recognize specific cancer antigens. CAR-NK cell therapy is gaining attention nowadays owing to the ability of CAR-NK cells to release potent cytotoxicity against cancer cells without side effects such as cytokine release syndrome (CRS), neurotoxicity and graft-versus-host disease (GvHD). CAR-NK cells do not require antigen priming, thus enabling them to be used as "off-the-shelf" therapy. Nonetheless, CAR-NK cell therapy still possesses several challenges in eliminating cancer cells which reside in hypoxic and immunosuppressive tumor microenvironment. Therefore, this review is envisioned to explore the current advancements and limitations of CAR-NK cell therapy as well as discuss strategies to overcome the challenges faced by CAR-NK cell therapy. This review also aims to dissect the current status of clinical trials on CAR-NK cells and future recommendations for improving the effectiveness and safety of CAR-NK cell therapy.


Assuntos
Imunoterapia Adotiva , Células Matadoras Naturais , Neoplasias , Receptores de Antígenos Quiméricos , Humanos , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos Quiméricos/genética , Imunoterapia Adotiva/métodos , Imunoterapia Adotiva/efeitos adversos , Células Matadoras Naturais/imunologia , Neoplasias/terapia , Neoplasias/imunologia , Animais , Microambiente Tumoral/imunologia , Ensaios Clínicos como Assunto , Antígenos de Neoplasias/imunologia
3.
Sci Immunol ; 9(95): eadj9730, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38728414

RESUMO

Chimeric antigen receptor (CAR) T cell immunotherapy for the treatment of neurological autoimmune diseases is promising, but CAR T cell kinetics and immune alterations after treatment are poorly understood. Here, we performed single-cell multi-omics sequencing of paired cerebrospinal fluid (CSF) and blood samples from patients with neuromyelitis optica spectrum disorder (NMOSD) treated with anti-B cell maturation antigen (BCMA) CAR T cells. Proliferating cytotoxic-like CD8+ CAR T cell clones were identified as the main effectors in autoimmunity. Anti-BCMA CAR T cells with enhanced features of chemotaxis efficiently crossed the blood-CSF barrier, eliminated plasmablasts and plasma cells in the CSF, and suppressed neuroinflammation. The CD44-expressing early memory phenotype in infusion products was potentially associated with CAR T cell persistence in autoimmunity. Moreover, CAR T cells from patients with NMOSD displayed distinctive features of suppressed cytotoxicity compared with those from hematological malignancies. Thus, we provide mechanistic insights into CAR T cell function in patients with neurological autoimmune disease.


Assuntos
Imunoterapia Adotiva , Receptores de Antígenos Quiméricos , Análise de Célula Única , Humanos , Imunoterapia Adotiva/métodos , Receptores de Antígenos Quiméricos/imunologia , Autoimunidade/imunologia , Neuromielite Óptica/imunologia , Neuromielite Óptica/terapia , Feminino , Masculino , Adulto , Pessoa de Meia-Idade , Sistema Nervoso Central/imunologia
4.
J Immunother Cancer ; 12(5)2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724463

RESUMO

BACKGROUND: Adoptive cell therapy, such as chimeric antigen receptor (CAR)-T cell therapy, has improved patient outcomes for hematological malignancies. Currently, four of the six FDA-approved CAR-T cell products use the FMC63-based αCD19 single-chain variable fragment, derived from a murine monoclonal antibody, as the extracellular binding domain. Clinical studies demonstrate that patients develop humoral and cellular immune responses to the non-self CAR components of autologous CAR-T cells or donor-specific antigens of allogeneic CAR-T cells, which is thought to potentially limit CAR-T cell persistence and the success of repeated dosing. METHODS: In this study, we implemented a one-shot approach to prevent rejection of engineered T cells by simultaneously reducing antigen presentation and the surface expression of both Classes of the major histocompatibility complex (MHC) via expression of the viral inhibitors of transporter associated with antigen processing (TAPi) in combination with a transgene coding for shRNA targeting class II MHC transactivator (CIITA). The optimal combination was screened in vitro by flow cytometric analysis and mixed lymphocyte reaction assays and was validated in vivo in mouse models of leukemia and lymphoma. Functionality was assessed in an autologous setting using patient samples and in an allogeneic setting using an allogeneic mouse model. RESULTS: The combination of the Epstein-Barr virus TAPi and an shRNA targeting CIITA was efficient and effective at reducing cell surface MHC classes I and II in αCD19 'stealth' CAR-T cells while retaining in vitro and in vivo antitumor functionality. Mixed lymphocyte reaction assays and IFNγ ELISpot assays performed with T cells from patients previously treated with autologous αCD19 CAR-T cells confirm that CAR T cells expressing the stealth transgenes evade allogeneic and autologous anti-CAR responses, which was further validated in vivo. Importantly, we noted anti-CAR-T cell responses in patients who had received multiple CAR-T cell infusions, and this response was reduced on in vitro restimulation with autologous CARs containing the stealth transgenes. CONCLUSIONS: Together, these data suggest that the proposed stealth transgenes may reduce the immunogenicity of autologous and allogeneic cellular therapeutics. Moreover, patient data indicate that repeated doses of autologous FMC63-based αCD19 CAR-T cells significantly increased the anti-CAR T cell responses in these patients.


Assuntos
Imunoterapia Adotiva , Receptores de Antígenos Quiméricos , Animais , Humanos , Camundongos , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos Quiméricos/genética , Imunoterapia Adotiva/métodos , Transgenes , Linfócitos T/imunologia
5.
Cells ; 13(9)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38727261

RESUMO

Chimeric antigen receptor (CAR)-T cell therapy has proven to be a powerful treatment for hematological malignancies. The situation is very different in the case of solid tumors, for which no CAR-T-based therapy has yet been approved. There are many factors contributing to the absence of response in solid tumors to CAR-T cells, such as the immunosuppressive tumor microenvironment (TME), T cell exhaustion, or the lack of suitable antigen targets, which should have a stable and specific expression on tumor cells. Strategies being developed to improve CAR-T-based therapy for solid tumors include the use of new-generation CARs such as TRUCKs or bi-specific CARs, the combination of CAR therapy with chemo- or radiotherapy, the use of checkpoint inhibitors, and the use of oncolytic viruses. Furthermore, despite the scarcity of targets, a growing number of phase I/II clinical trials are exploring new solid-tumor-associated antigens. Most of these antigens are of a protein nature; however, there is a clear potential in identifying carbohydrate-type antigens associated with tumors, or carbohydrate and proteoglycan antigens that emerge because of aberrant glycosylations occurring in the context of tumor transformation.


Assuntos
Imunoterapia Adotiva , Neoplasias , Receptores de Antígenos Quiméricos , Humanos , Neoplasias/terapia , Neoplasias/imunologia , Imunoterapia Adotiva/métodos , Receptores de Antígenos Quiméricos/imunologia , Microambiente Tumoral/imunologia , Antígenos de Neoplasias/imunologia , Linfócitos T/imunologia , Animais
6.
Cells ; 13(9)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38727262

RESUMO

Glioblastoma (GBM) is the most common primary malignant brain tumor, with a median overall survival of less than 2 years and a nearly 100% mortality rate under standard therapy that consists of surgery followed by combined radiochemotherapy. Therefore, new therapeutic strategies are urgently needed. The success of chimeric antigen receptor (CAR) T cells in hematological cancers has prompted preclinical and clinical investigations into CAR-T-cell treatment for GBM. However, recent trials have not demonstrated any major success. Here, we delineate existing challenges impeding the effectiveness of CAR-T-cell therapy for GBM, encompassing the cold (immunosuppressive) microenvironment, tumor heterogeneity, T-cell exhaustion, local and systemic immunosuppression, and the immune privilege inherent to the central nervous system (CNS) parenchyma. Additionally, we deliberate on the progress made in developing next-generation CAR-T cells and novel innovative approaches, such as low-intensity pulsed focused ultrasound, aimed at surmounting current roadblocks in GBM CAR-T-cell therapy.


Assuntos
Glioblastoma , Imunoterapia Adotiva , Receptores de Antígenos Quiméricos , Humanos , Glioblastoma/terapia , Glioblastoma/imunologia , Imunoterapia Adotiva/métodos , Receptores de Antígenos Quiméricos/imunologia , Microambiente Tumoral/imunologia , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/imunologia , Linfócitos T/imunologia , Animais
7.
Nat Commun ; 15(1): 3933, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38730243

RESUMO

As a strategy to improve the therapeutic success of chimeric antigen receptor T cells (CART) directed against solid tumors, we here test the combinatorial use of CART and IMSA101, a newly developed stimulator of interferon genes (STING) agonist. In two syngeneic tumor models, improved overall survival is observed when mice are treated with intratumorally administered IMSA101 in addition to intravenous CART infusion. Transcriptomic analyses of CART isolated from tumors show elevated T cell activation, as well as upregulated cytokine pathway signatures, in particular IL-18, in the combination treatment group. Also, higher levels of IL-18 in serum and tumor are detected with IMSA101 treatment. Consistent with this, the use of IL-18 receptor negative CART impair anti-tumor responses in mice receiving combination treatment. In summary, we find that IMSA101 enhances CART function which is facilitated through STING agonist-induced IL-18 secretion.


Assuntos
Interleucina-18 , Proteínas de Membrana , Receptores de Antígenos Quiméricos , Animais , Interleucina-18/metabolismo , Proteínas de Membrana/agonistas , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Camundongos , Receptores de Antígenos Quiméricos/metabolismo , Receptores de Antígenos Quiméricos/imunologia , Humanos , Linhagem Celular Tumoral , Camundongos Endogâmicos C57BL , Linfócitos T/imunologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/metabolismo , Ativação Linfocitária/efeitos dos fármacos , Imunoterapia Adotiva/métodos , Feminino , Neoplasias/imunologia , Neoplasias/terapia , Neoplasias/tratamento farmacológico
8.
Mol Cancer ; 23(1): 98, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38730483

RESUMO

The efficacy of Adoptive Cell Transfer Therapy (ACT) in combating hematological tumors has been well-documented, yet its application to solid tumors faces formidable hurdles, chief among them being the suboptimal therapeutic response and the immunosuppressive milieu within the tumor microenvironment (TME). Recently, Garcia, J. et al. present compelling findings shedding light on potential breakthroughs in this domain. Their investigation reveals the pronounced augmentation of anti-tumor activity in CAR T cells through the introduction of a T cell neoplasm fusion gene, CARD11-PIK3R3. The incorporation of this gene into engineered T cell therapy holds promise as a formidable tool in the arsenal of cancer immunotherapy. The innovative strategy outlined not only mitigates the requirement for high doses of CAR T cells but also enhances tumor control while exhibiting encouraging safety profiles. The exploration of the CARD11-PIK3R3 fusion gene represents an advancement in our approach to bolstering the anti-tumor efficacy of immunotherapeutic interventions. Nonetheless, the imperative for further inquiry to ascertain its transfection efficiency and long-term safety cannot be overstated. Nevertheless, this seminal investigation offers a beacon of hope in surmounting the formidable treatment impediments posed by solid tumors, paving the way for a transformative era in cancer therapeutics.


Assuntos
Imunoterapia Adotiva , Neoplasias , Receptores de Antígenos Quiméricos , Humanos , Neoplasias/terapia , Neoplasias/genética , Neoplasias/imunologia , Imunoterapia Adotiva/métodos , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos Quiméricos/metabolismo , Microambiente Tumoral/imunologia , Linfócitos T/imunologia , Linfócitos T/metabolismo , Animais
10.
J Hematol Oncol ; 17(1): 29, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38711046

RESUMO

Currently, many off-the-shelf chimeric antigen receptor (CAR)-T cell products are under investigation for the treatment of relapsed or refractory (R/R) B-cell neoplasms. Compared with autologous CAR-T cell therapy, off-the-shelf universal CAR-T cell therapies have many potential benefits, such as immediate accessibility for patients, stable quality due to industrialized manufacturing and additional infusions of CAR-T cells with different targets. However, critical challenges, including graft-versus-host disease and CAR-T cell elimination by the host immune system, still require extensive research. The most common technological approaches involve modifying healthy donor T cells via gene editing technology and altering different types of T cells. This article summarizes some of the latest data from preclinical and clinical studies of off-the-shelf CAR-T cell therapies in the treatment of R/R B-cell malignancies from the 2023 ASH Annual Meeting (ASH 2023).


Assuntos
Imunoterapia Adotiva , Receptores de Antígenos Quiméricos , Humanos , Imunoterapia Adotiva/métodos , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos Quiméricos/uso terapêutico , Leucemia de Células B/terapia , Leucemia de Células B/imunologia , Linfoma de Células B/terapia , Linfoma de Células B/imunologia , Linfócitos T/imunologia , Linfócitos T/transplante
11.
Front Immunol ; 15: 1381308, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38745670

RESUMO

Chimeric antigen receptor T cells (CAR T) targeting CD7 for T-cell acute lymphoblastic leukemia/lymphoma (T-ALL/LBL) showed promising efficacy and safety in some clinical trials. However, most of them were bridged with allogeneic hematopoietic stem cell transplantation (allo-HSCT). We described successful treatment with preventive donor-derived anti-CD7 CAR-T therapy in a case of refractory T lymphoblastic lymphoma following allo-HSCT, who could not receive autologous anti-CD7 CAR-T products due to the low-quality of T lymphocytes. To date, the patient's complete remission has persisted for 20 months after HSCT.


Assuntos
Antígenos CD7 , Transplante de Células-Tronco Hematopoéticas , Imunoterapia Adotiva , Receptores de Antígenos Quiméricos , Transplante Homólogo , Humanos , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Imunoterapia Adotiva/métodos , Imunoterapia Adotiva/efeitos adversos , Antígenos CD7/imunologia , Receptores de Antígenos Quiméricos/imunologia , Masculino , Doadores de Tecidos , Linfócitos T/imunologia , Leucemia-Linfoma Linfoblástico de Células T Precursoras/terapia , Leucemia-Linfoma Linfoblástico de Células T Precursoras/imunologia , Resultado do Tratamento , Adulto
12.
Methods Mol Biol ; 2807: 287-298, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38743236

RESUMO

The inability of people living with HIV (PLWH) to eradicate human immunodeficiency virus (HIV) infection is due in part to the inadequate HIV-specific cellular immune response. The antiviral function of cytotoxic CD8+ T cells, which are crucial for HIV control, is impaired during chronic viral infection because of viral escape mutations, immune exhaustion, HIV antigen downregulation, inflammation, and apoptosis. In addition, some HIV-infected cells either localize to tissue sanctuaries inaccessible to CD8+ T cells or are intrinsically resistant to CD8+ T cell killing. The novel design of synthetic chimeric antigen receptors (CARs) that enable T cells to target specific antigens has led to the development of potent and effective CAR-T cell therapies. While initial clinical trials using anti-HIV CAR-T cells performed over 20 years ago showed limited anti-HIV effects, the improved CAR-T cell design, which enabled its success in treating cancer, has reinstated CAR-T cell therapy as a strategy for HIV cure with notable progress being made in the recent decade.Effective CAR-T cell therapy against HIV infection requires the generation of anti-HIV CAR-T cells with potent in vivo activity against HIV-infected cells. Preclinical evaluation of anti-HIV efficacy of CAR-T cells and their safety is fundamental for supporting the initiation of subsequent clinical trials in PLWH. For these preclinical studies, we developed a novel humanized mouse model supporting in vivo HIV infection, the development of viremia, and the evaluation of novel HIV therapeutics. Preclinical assessment of anti-HIV CAR-T cells using this mouse model involves a multistep process including peripheral blood mononuclear cells (PBMCs) harvested from human donors, T cell purification, ex vivo T cell activation, transduction with lentiviral vectors encoding an anti-HIV CAR, CAR-T cell expansion and infusion in mice intrasplenically injected with autologous PBMCs followed by the determination of CAR-T cell capacity for HIV suppression. Each of the steps described in the following protocol were optimized in the lab to maximize the quantity and quality of the final anti-HIV CAR-T cell products.


Assuntos
Infecções por HIV , Imunoterapia Adotiva , Receptores de Antígenos Quiméricos , Humanos , Animais , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/metabolismo , Camundongos , Infecções por HIV/imunologia , Infecções por HIV/terapia , Infecções por HIV/virologia , Imunoterapia Adotiva/métodos , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Linfócitos T CD8-Positivos/imunologia , HIV-1/imunologia , Linfócitos T/imunologia , Transdução Genética
13.
J Cell Mol Med ; 28(9): e18369, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38712978

RESUMO

Acute myeloid leukaemia (AML) is a fatal and refractory haematologic cancer that primarily affects adults. It interferes with bone marrow cell proliferation. Patients have a 5 years survival rate of less than 30% despite the availability of several treatments, including chemotherapy, allogeneic haematopoietic stem cell transplantation (Allo-HSCT), and receptor antagonist drugs. Allo-HSCT is the mainstay of acute myeloid leukaemia treatment. Although it does work, there are severe side effects, such as graft-versus-host disease (GVHD). In recent years, chimeric antigen receptor (CAR)-T cell therapies have made significant progress in the treatment of cancer. These engineered T cells can locate and recognize tumour cells in vivo and release a large number of effectors through immune action to effectively kill tumour cells. CAR-T cells are among the most effective cancer treatments because of this property. CAR-T cells have demonstrated positive therapeutic results in the treatment of acute myeloid leukaemia, according to numerous clinical investigations. This review highlights recent progress in new targets for AML immunotherapy, and the limitations, and difficulties of CAR-T therapy for AML.


Assuntos
Imunoterapia Adotiva , Leucemia Mieloide Aguda , Receptores de Antígenos Quiméricos , Humanos , Leucemia Mieloide Aguda/terapia , Leucemia Mieloide Aguda/imunologia , Imunoterapia Adotiva/métodos , Receptores de Antígenos Quiméricos/imunologia , Linfócitos T/imunologia , Animais
14.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 40(4): 289-295, 2024 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-38710512

RESUMO

Objective To evaluate the toxicology of targeting human epidermal growth factor receptor-2 chimeric antigen receptor T (HER2-CAR-T) cells and to provide a safety basis for the clinical evaluation of HER2-CAR-T cell therapy. Methods The recombinant lentiviral vector was used to generate HER2-CAR-T cells. Soft agar colony formation assay was used to observe the colony formation of HER2-CAR-T cells, and the colony formation rate was statistically analyzed. The HER2-CAR-T cell suspension was co-incubated with rabbit red blood cell suspension, and the hemolysis of red blood cells was evaluated by direct observation and microplate reader detection. The HER2-CAR-T cell preparation was injected into the ear vein of male New Zealand rabbits, and the stimulating effect of HER2-CAR-T cells on the blood vessels of the animals was observed by staining of tissue sections. The vesicular stomatitis virus envelope glycoprotein (VSV-G) gene of pMD 2.G vector was used as the target sequence, and the safety of the lentiviral vector was verified by real-time fluorescence quantitative PCR. The heart, liver, lung, and kidney of mice receiving HER2-CAR-T cell infusion were collected, and the lesions were observed by HE staining. Results The HER2-CAR-T cells were successfully prepared. These cells did not exhibit soft agar colony formation ability in vitro, and the HER2-CAR-T cell preparation did not cause hemolysis in New Zealand rabbit red blood cells. After the infusion of HER2-CAR-T cells into the ear vein of New Zealand rabbits, no obvious vascular stimulation response was found, and no specific amplification of VSV-G was detected. No obvious lesions were found in the heart, liver, lung and kidney tissues of the treatment group. Conclusion The prepared HER2-CAR-T cells have reliable safety.


Assuntos
Receptor ErbB-2 , Receptores de Antígenos Quiméricos , Animais , Humanos , Receptor ErbB-2/genética , Receptor ErbB-2/imunologia , Coelhos , Camundongos , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos Quiméricos/genética , Masculino , Imunoterapia Adotiva/métodos , Linfócitos T/imunologia , Linfócitos T/metabolismo , Linhagem Celular Tumoral , Vetores Genéticos/genética , Lentivirus/genética , Feminino
15.
Sci Adv ; 10(19): eadk1857, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38718110

RESUMO

Chimeric antigen receptor (CAR)-T cell therapy shows impressive efficacy treating hematologic malignancies but requires further optimization in solid tumors. Here, we developed a TMIGD2 optimized potent/persistent (TOP) CAR that incorporated the costimulatory domain of TMIGD2, a T and NK cell costimulator, and monoclonal antibodies targeting the IgV domain of B7-H3, an immune checkpoint expressed on solid tumors and tumor vasculature. Comparing second- and third-generation B7-H3 CARs containing TMIGD2, CD28, and/or 4-1BB costimulatory domains revealed superior antitumor responses in B7-H3.TMIGD2 and B7-H3.CD28.4-1BB CAR-T cells in vitro. Comparing these two constructs using in vivo orthotopic human cancer models demonstrated that B7-H3.TMIGD2 CAR-T cells had equivalent or superior antitumor activity, survival, expansion, and persistence. Mechanistically, B7-H3.TMIGD2 CAR-T cells maintained mitochondrial metabolism; produced less cytokines; and established fewer exhausted cells, more central memory cells, and a larger CD8/CD4 T cell ratio. These studies demonstrate that the TOP CAR with TMIGD2 costimulation offered distinct benefits from CD28.41BB costimulation and is effective against solid tumors.


Assuntos
Imunoterapia Adotiva , Neoplasias , Receptores de Antígenos Quiméricos , Humanos , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos Quiméricos/metabolismo , Receptores de Antígenos Quiméricos/genética , Animais , Neoplasias/terapia , Neoplasias/imunologia , Imunoterapia Adotiva/métodos , Camundongos , Linhagem Celular Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto , Antígenos B7/metabolismo , Antígenos B7/imunologia , Antígenos CD28/metabolismo , Antígenos CD28/imunologia , Linfócitos T/imunologia , Linfócitos T/metabolismo
16.
Front Immunol ; 15: 1389018, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38720898

RESUMO

Introduction: Multiple myeloma (MM) remains incurable, despite the advent of chimeric antigen receptor (CAR)-T cell therapy. This unfulfilled potential can be attributed to two untackled issues: the lack of suitable CAR targets and formats. In relation to the former, the target should be highly expressed and reluctant to shedding; two characteristics that are attributed to the CS1-antigen. Furthermore, conventional CARs rely on scFvs for antigen recognition, yet this withholds disadvantages, mainly caused by the intrinsic instability of this format. VHHs have been proposed as valid scFv alternatives. We therefore intended to develop VHH-based CAR-T cells, targeting CS1, and to identify VHHs that induce optimal CAR-T cell activation together with the VHH parameters required to achieve this. Methods: CS1-specific VHHs were generated, identified and fully characterized, in vitro and in vivo. Next, they were incorporated into second-generation CARs that only differ in their antigen-binding moiety. Reporter T-cell lines were lentivirally transduced with the different VHH-CARs and CAR-T cell activation kinetics were evaluated side-by-side. Affinity, cell-binding capacity, epitope location, in vivo behavior, binding distance, and orientation of the CAR-T:MM cell interaction pair were investigated as predictive parameters for CAR-T cell activation. Results: Our data show that the VHHs affinity for its target antigen is relatively predictive for its in vivo tumor-tracing capacity, as tumor uptake generally decreased with decreasing affinity in an in vivo model of MM. This does not hold true for their CAR-T cell activation potential, as some intermediate affinity-binding VHHs proved surprisingly potent, while some higher affinity VHHs failed to induce equal levels of T-cell activation. This could not be attributed to cell-binding capacity, in vivo VHH behavior, epitope location, cell-to-cell distance or binding orientation. Hence, none of the investigated parameters proved to have significant predictive value for the extent of CAR-T cell activation. Conclusions: We gained insight into the predictive parameters of VHHs in the CAR-context using a VHH library against CS1, a highly relevant MM antigen. As none of the studied VHH parameters had predictive value, defining VHHs for optimal CAR-T cell activation remains bound to serendipity. These findings highlight the importance of screening multiple candidates.


Assuntos
Imunoterapia Adotiva , Mieloma Múltiplo , Receptores de Antígenos Quiméricos , Anticorpos de Domínio Único , Mieloma Múltiplo/imunologia , Mieloma Múltiplo/terapia , Humanos , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/metabolismo , Anticorpos de Domínio Único/imunologia , Imunoterapia Adotiva/métodos , Animais , Linhagem Celular Tumoral , Camundongos , Ativação Linfocitária/imunologia , Linfócitos T/imunologia , Linfócitos T/metabolismo , Família de Moléculas de Sinalização da Ativação Linfocitária/imunologia , Família de Moléculas de Sinalização da Ativação Linfocitária/metabolismo , Anticorpos de Cadeia Única/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Front Immunol ; 15: 1358478, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38698840

RESUMO

Introduction: Cancer combination treatments involving immunotherapies with targeted radiation therapy are at the forefront of treating cancers. However, dosing and scheduling of these therapies pose a challenge. Mathematical models provide a unique way of optimizing these therapies. Methods: Using a preclinical model of multiple myeloma as an example, we demonstrate the capability of a mathematical model to combine these therapies to achieve maximum response, defined as delay in tumor growth. Data from mice studies with targeted radionuclide therapy (TRT) and chimeric antigen receptor (CAR)-T cell monotherapies and combinations with different intervals between them was used to calibrate mathematical model parameters. The dependence of progression-free survival (PFS), overall survival (OS), and the time to minimum tumor burden on dosing and scheduling was evaluated. Different dosing and scheduling schemes were evaluated to maximize the PFS and optimize timings of TRT and CAR-T cell therapies. Results: Therapy intervals that were too close or too far apart are shown to be detrimental to the therapeutic efficacy, as TRT too close to CAR-T cell therapy results in radiation related CAR-T cell killing while the therapies being too far apart result in tumor regrowth, negatively impacting tumor control and survival. We show that splitting a dose of TRT or CAR-T cells when administered in combination is advantageous only if the first therapy delivered can produce a significant benefit as a monotherapy. Discussion: Mathematical models are crucial tools for optimizing the delivery of cancer combination therapy regimens with application along the lines of achieving cure, maximizing survival or minimizing toxicity.


Assuntos
Imunoterapia Adotiva , Receptores de Antígenos Quiméricos , Animais , Imunoterapia Adotiva/métodos , Camundongos , Terapia Combinada/métodos , Receptores de Antígenos Quiméricos/imunologia , Humanos , Mieloma Múltiplo/terapia , Mieloma Múltiplo/imunologia , Mieloma Múltiplo/radioterapia , Modelos Teóricos , Linhagem Celular Tumoral , Neoplasias/terapia , Neoplasias/imunologia , Neoplasias/radioterapia , Radioisótopos/uso terapêutico , Linfócitos T/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Hum Vaccin Immunother ; 20(1): 2338984, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38698555

RESUMO

CAR-T cell therapy has emerged as a significant approach for the management of hematological malignancies. Over the past few years, the utilization of CAR-T cells in the investigation and treatment of solid tumors has gained momentum, thereby establishing itself as a prominent area of research. This descriptive study involved the retrieval of articles about CAR-T cell therapy for solid tumors from the Web of Science Core Collection (WoSCC) database. Subsequently, bibliometric analysis and knowledge map analysis were conducted on these articles. The field under consideration is currently experiencing a period of swift advancement, as evidenced by the escalating number of publications in this domain each year. The United States holds an indisputable position as the foremost leader in this particular field, with the University of Pennsylvania emerging as the most active institution. The authors with the highest citation frequency and co-citation frequency are Carl H. June and Shannon L. Maude, respectively. The research hotspots in this field mainly focus on five aspects. Additionally, 10 emerging themes were identified. This study undertakes a comprehensive, systematic, and objective analysis and exploration of the field of CAR-T cell treatment for solid tumors, utilizing bibliometric methods. The findings of this study are expected to serve as a valuable reference and enlightenment for future research endeavors in this particular domain.


Assuntos
Bibliometria , Imunoterapia Adotiva , Neoplasias , Humanos , Neoplasias/terapia , Imunoterapia Adotiva/métodos , Pesquisa Biomédica/tendências , Receptores de Antígenos Quiméricos/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA